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Abstract—In this paper we study the behavior of a very fast bidirec-
tional bus system. The bidirectional bus system has been investigated in
the past under the main assumption that the propagation delay incurred
by a packet is relatively small in comparison to its transmission time.
Under this assumption, it has been shown that if the packet transmission
time decreases, the performance of existing access schemes (like CSMA)
degrades. Recent technological developments (such as fiber optics) in
communication networks have made possible much faster bus networks.
For these networks it no longer may be assumed that the propagation
delay is relatively small in comparison to the transmission time. This
paper deals with analyzing the very fast bidirectional bus system. In
contrast to previous studies, the assumption that the bus is very fast is
inherently embedded in the system model. The results derived in this
paper show that due to self-synchronization properties observed in the
system at high loads, the system performance is not poor as implied
from previous studies.

I. INTRODUCTION AND PREVIOUS WORK

N local area networks, a channel is shared among many stations

which are (relatively) close to each other. One of the common
topologies for such a network is the bidirectional bus (e.g., Ether-
net) and one of the most popular access schemes for this topology is
Carrier Sense Multiple Access (CSMA). In CSMA, a station senses
the channel before transmitting; if the channel is idle the station
transmits right away, otherwise it stays silent and postpones trans-
mission for a later time. (An improvement of CSMA is CSMA with
Collision Detection (CSMA-CD). In this scheme, in addition to
carrier sensing, a station can listen to the channel while it is
transmitting and therefore can detect if it is involved in a collision.
If a collision is detected, the station aborts its transmission and
repeats the scheme described ‘above.) Both access schemes take
advantage of the very short.propagation delay (relative to the
transmission time). The ratio between the propagation delay and the
packet transmission time is denoted by a and can be thought of as
the number of packets ‘‘contained in’* the bus:

a propagation delay

a T
packet transmission time

The performance of CSMA was studied by Kleinrock and Tobagi
in [6], [7], and [16]. The performance of CSMA-CD was studied by
Tobagi and Hunt [17] and by Lam [9]. These studies were based on
the underlying assumption that the parameter a is small so that
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packets are heard simultaneously by all stations. Two important
properties were observed with respect to these access schemes. 1)
The attained throughput, S, of both systems, increases with the
offered load, G, until it reaches its maximum. After this point
(very high load), the throughput decreases. 2) The maximum attain-
able throughput, denoted traditionally as the system capacity (and
to be denoted here as the system efficiency’), decreases with a. It is
observed that the performance of these schemes is good as long as
a = 0.05 (efficiency of about 70%). For larger values of a (like
a = 1), the efficiency of these systems may go as low as 20%.

Technological developments (such as fiber optics) in communica-
tion networks have recently increased the speed of the communica-
tion channel, and future developments are likely to increase it even
more. Other technological improvements allow the future networks
to be longer and longer. These trends lead the communication
industry to the building of systems where the parameter a is larger
and larger. One possibility for analyzing these new systems is to
follow the approach taken in [6], [7], [16], [17], and [9] and to use
the throughput/efficiency expression derived there. Doing so, we
soon realize that the efficiency of these systems approaches zero as
a increases, and thus the use of CSMA may be very inefficient in
these systems.

The goal of this paper is to challenge this ““discouraging’’ result
predicting that the throughput of CSMA on very fast networks is
very close to zero. We depart from the previous studies by discard-
ing the assumptions that a is small and that packets are instanta-
neously received by all stations. Instead, we use the fact that a is
large as an underlying assumption (in fact, we assume that a = N
— 1, where N is the number of attached stations) and create a
model in which the propagation process is inherently modeled
(rather than being assumed to be instantancous). The main feature of
the model adopted is that different packets are heard at different
times by different stations. This creates discrepancy among the
stations (rather than uniformity in the previous models) and thus
causes the system to have several plausible (and quite surprising)
properties. 1) The efficiency of the system, under deterministic and
scheduled arrivals, is close to 2 (in contrast to efficiency of 1 in the
previous models). 2) Under stochastic arrivals, the system is stable:
an increase in the offered load leads to an increase in the through-
put. 3) The system efficiency, under stochastic arrivals, and using

! Here we need to elaborate on the terminology. In the traditional litera-
ture, throughput is dimensionless and denotes the fraction of time at which
successful transmissions are received in the system (usually it is assumed that
the transmission of a packet takes one time unit and then throughput is
measured in packets per time unit). Capacity, in that terminology, is
measured in the same units (i.¢., it is dimensionless) and is defined to be the
maximal attainable throughput of the system. Here we use a slightly different
terminology: we define the system efficiency to be identical to what
traditionally has been defined as capacity (therefore the units of efficiency are
dimensionless) and define capacity as the maximal number of bits which can
be successfully transmitted (on the average) per time unit in the system; The
units of capacity are, therefore, bits per time unit. Note that in our
terminology capacity is the product of the transmission rate (measured in bits
per time unit) and the efficiency, namely: capacity = transmission rate X
efficiency. Note also that the adoption of this terminology (as opposed to the
traditional one) is necessary when the analysis involves comparisons of
systems with different transmission rates. :
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the CSMA efficiency, is 1 (and not close to zero as previously may
have been predicted). We thus conclude that due to asymmetry
between the stations, the performance of these networks is much
better than what would otherwise be predicted by the fully symmet-
ric “‘traditional’’ models.

The structure of this paper is as follows. In Section II, the system
model is described. In Section III we study the theoretical limita-
tions of the very fast shared bus system. The main goal in that
section is to calculate the maximum throughput which can be
achieved in the system, neglecting the randomized behavior of the
system inputs. Bounds for the system efficiency under several
conditions are derived in that section. In Section IV we investigate
the system behavior under the assumption of stochastic arrivals. The
model used in that section is similar to the models used in the
analysis of slotted ALOHA and CSMA; however, in contrast to
those models, this model captures the correlation between events
occurring in the system. The main property discovered in this
analysis is that in contrast to previously studied shared channel
systems, this system is very stable and the system throughput
increases with the offered load. Concluding remarks are given in
Section V.

Last, a word about recent related work. In an independent study,
Sohraby, Molle, and Venetsanopoulos [12]-[15] studied the perfor-
mance of CSMA in fast bus systems. The similarity between the two
studies is in the explicit modeling of the packet propagation, and in
discovering the network asymmetry which implies good perfor-
mance. That work is different from ours in some aspects of the
modeling and in dealing with systems with Jlarge a which is
bounded to be a < 1/2; in contrast, we deal with very large a
(a = O(N) where N is the number of stations). The behavior of
fast bus systems has also been investigated by several other studies.
However, those studies concentrated on suggesting semiorganized
access schemes for these networks and not on studying the behavior
of these networks under the CSMA scheme. The main principle of
those schemes is to organize the packets transmitted in the system to
efficiently use the channel. These studies are reported in [3]-[5] and
[11].

II. MODEL DESCRIPTION

The system consists of N stations connected by a bidirectional
bus and numbered 1, 2,-- -, N from left to right. It is assumed that
the stations are located on the bus such that the distance between
every two neighboring stations is exactly one unit. The length of a
fixed size packet, measured in terms of distance, is assumed to be
smaller than or equal to the distance between two neighboring
stations. This implies that the parameter @ of this system is a = N
— 1. For simplicity, we assume that the packet size exactly equals
the distance between neighboring stations, i.e., @ = N — 1. Time is
slotted with slot size equal to the time required to transmit a packet.
The time interval, starting at time ¢ and ending at time 7 + 1, is
called the tth slot. Every packet transmission starts at the beginning
of some slot.

Due to these assumptions, it is not sufficient to characterize the
system events by their timing only; rather, a time-location character-
ization of events is required. We therefore represent the system
behavior using a time-space domain where the horizontal axis
represents the location on the bus and the vertical axis represents
time (progressing down the page). The propagation of a packet is
represented by a band (see Fig. 1, where station 2 transmits a packet
at slot ¢ and stations 1 and 3 hear it at slot ¢ + 1).

In contrast to the traditional model, packets which collide are not
assumed to destroy each other. Rather, they are assumed to ‘‘pass
through”” each other. For example, consider the two packets de-
picted in Fig. 1. Packets are concurrently transmitted by stations 2
and 4 at slot . During slot 7 + 1, the packets collide at station 3,
and thus neither of them is heard properly by station 3. However,
the packets ‘‘pass through’” each other, so during slot 7 + 2 one of
them is heard correctly by station 2 and the other is heard correctly
by station 4. This assumption is valid, for example, when the

1855

STATIONS
1 2 3 4

TIME

Fig. 1. Two packets pass through each other.

bidirectional channel is implemented by two one-directional fiber
buses.

From the above description, it is implied that the terms: idle slot,
successful slot, and collision slot are not global properties of the
system, but rather local properties of a given station. Therefore, ail
references to a particular slot will include both time and location
reference. For example, we say that in Fig. 1 siot ¢ + 1 is an idle
slot at stations 2 and 4, a successful slot at station 1, and a
collision slot at station 3.

It is important in the context of this model to accurately define the
notion of successful reception. Although the transmission medium
is a broadcast medium (i.e., a single packet may be heard by all
stations), we assume that the messages themselves are not of the
broadcast type but rather of the point-to-point (PTP) type. This
means that every packet is destined to a single destination, and only
that destination needs to receive it properly. Following this assump-
tion, we define the successful hearing and successful reception of
a packet: a packet is said to be successfully heard by station i at
slot ¢ if the packet is heard by i at slot ¢, and ¢ is a successful slot
at I. A packet is said to be successfully received by station i at
slot t if it is destined to station / and if it is successfully heard by /
at slot ¢.

Two important properties of multiple access algorithms are to be
discussed in this paper: politeness and fairness. A station is said to
be polite if it does not transmit when it hears a transmission
originated from another station. Note that politeness is a desired
property which is utilized in CSMA algorithms using the Carrier
Sense mechanism of the stations. Nevertheless, Carrier Sense in its
traditional form will not be very effective in this slotted environ-
ment, and needs to be slightly enhanced. This issue can be best
explained using Fig. 1 where we consider the action taken by station
2 at slot ¢ + 2. In order to prevent station 2 from interfering with
the currently passing packet (transmitted from station 4 at slot ¢), it
is required that station 2 will be polite at this slot. To enforce this
politeness, station 2 needs to make a decision, right at the beginning
of slot ¢ + 2, whether to transmit or not, based on what appears on
the channel at that moment. This can be done only if the station can
have some ‘‘look-ahead’’ mechanism, by which it can tell at time
t~ what will be the channel status at time ¢. This ‘‘look-ahead’’
mechanism can be easily constructed by bending the bus at the
station neighborhood in an Q shape, and having the station tapped at
the two  legs for ‘‘look-ahead”” sensing, and to the € head for
transmission or reception.

In addition to general politeness, we define directional politeness.
A station is said to be polite to the left (right) if it does not
transmit when it hears a transmission originated at a lower (higher)
index station (i.e., a transmission that arrives from the left (right),
according to our representation).

A transmission policy is called fair if, for every two stations #
and j, station j is allowed to transmit between any two consecutive
transmissions of station /. A transmission policy is called strictly
fair if, for every four stations i, j, k, and /, station i/ is allowed to
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transmit to station j between any two consecutive transmissions
from station k to station /.

I11. ON THE EFFICIENCY OF THE SYSTEM

In this section we study the system efficiency under various
conditions. The goal is to find the maximum throughput which can
be achieved in the system when perfect scheduling is used. The
importance in deriving this measure is in understanding the system
limitations, and in comparing the system potential to that of other
systems. The assumptions used in this section are given in Section
II, and the main ones are the following three: 1) the stations are
evenly spaced on the bus, 2) the transmissions are slotted and the
packet size is equal to the distance between two neighboring sta-
tions, and 3) packets ‘‘pass through®’ each other.

To define system throughput, recall that a packet is considered to
be successful if it is heard successfully by its destination station. Let
P(t) be the number of packets that have been successfully received
in the system by time ¢; then the system throughput, denoted by S,
is defined tobe S 2 lim P(1)/t. The system efficiency is defined

oo
to be the highest throughput which can be achieved by using a
perfect scheduling algorithm (which can perfectly, ahead of time,
schedule the transmissions of every station).

For most communication systems, it is straightforward to derive
the system efficiency. For example, the efficiency of a system
consisting of two stations connected by a point-to-point link is 1,
since at most one unit of information can be transmitted on that
system per unit of time. Similarly, the efficiency of a fully con-
nected N-node network (where each of the links is a point-to-point
link and N is even) is N/2, since this is the number of conversa-
tions that can be concurrently held in the system. The efficiency of
the bidirectional bus system, as considered in our paper but under
the assumption that the parameter g is small, is 1 since at most one
station can successfully transmit at any time.

In contrast to all these systems, the dependency of events in our
system both on time and location requires a more careful analysis of
the efficiency. In the following we derive both upper and lower
bounds on the system efficiency.

A. Two Upper Bounds on the System Efficiency

Before deriving the bounds, some more notation is required. A
point (i, f) in the time-space domain is called a fransmission point
if station 7 transmits a packet at slot ¢ (i.e., starts transmitting at
time ¢). A point (i, f) in the time-space domain is called a
reception point if station i successfully receives a packet during
slot ¢. A line which contains the points (¢, 1), (¢ + 1, 2), (£ + 2,
3),»++,(t + N— 1, N) is called a left diagonal (a diagonal that
starts from top left and goes downward and to the right). Similarly,
a right diagonal is defined. Next, two upper bounds for the system
efficiency are derived.

Theorem 1: For any scheduling policy, the system throughput
obeys: S < N/2.

Proof: We assume that there is no transmission prior to ¢ = 0.
Let T(¢) and R(¢f) be, respectively, the sets of transmission points
and reception points (i, ¢') such that ¢’ < ¢ (i =1,-++, N). Let (i,
¢,) be a reception point in R(?), then there exists a transmission
point (j, t,) € T(f) which uniquely corresponds to (i, #,). This is
the transmission point which corresponds to the transmission of the
packet successfully received at (i, ¢,). For this reason, we may
conclude that | 7(¢)| = | R(#)|. In addition, the two sets T'() and
R(#) must be disjoint since a station cannot transmit and receive
concurrently, so the number of points in the joint set cannot exceed
the number of points in the N X ¢ rectangle, namely, | R(#)] +
| T(#)| = Nt. Thus, from the two inequalities: | R(#)|/¢ < N/2,
and the claim follows since | R(#)| is the number of packets
successfully received by time ?. O

Theorem 2: For any scheduling policy, the system throughput
obeys: S < 2.

Proof: To prove the claim, consider first a system (called
SYS1) consisting of a single unidirectional bus. Assuming that the
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transmission direction is from left to right, we examine the time-
space domain and observe that on every left-diagonal there may be
at most one reception point. For this reason, the number of recep-
tion points in the N X # rectangle mustobey | R(f)| <t + N -1,
and the unidirectional bus throughput is therefore bounded from
above by 1.

Next, consider a system (called SYS2) consisting of N stations
and two unidirectional buses: one is used to transmit packets from
right to left, and the other used to transmit packets on the reverse
direction. The activity of a station on one bus may be independent
of its activity on the other bus. Thus, for example, a station may
transmit on one bus while receiving on the other. Now, it is obvious
that the efficiency of SYS2 is bounded by twice the efficiency SYS1.
Also, the efficiency of the bidirectional bus system must be bounded
from above by the efficiency of SYS2 (simply because the stations in
SYS2 are less restricted) and thus the claim follows. O

We therefore conclude that the throughput of any scheduling
policy is bounded by:

S <min(N/2,2).

B. Achievable Throughput

In this subsection we present lower bounds for the system effi-
ciency under various constraints. First we look at an unconstrained
system. It is relatively simple to construct a schedule under which
the system throughput is 2 — 2/N. This schedule is depicted in Fig.
2 where a transmission point is represented by a full dot and a
reception point by an empty square. For clarity of the figure, a
packet propagation is represented only by a line (representing the
““front’’ part of the packet) and not by a band. Note, however, that
this schedule does not obey the fairness restriction since most of the
traffic is originated from and destined to the end stations (1 and N).

Next we consider fair policies and strictly fair policies. Obvi-
ously, the efficiency of these systems is bounded by the efficiency of
the unconstrained system. Surprisingly, we find that even the strictly
fair system may achieve throughput which is very close to 2. In
[10], we constructed a strictly fair policy which achieves throughput
of

6N — 8

§=2- —4—7.
N2+2N-4

A more efficient transmission pattern for the strictly fair system
has been suggested by C. Ferguson. This pattern is depicted in Fig.
3. The throughput attained by this pattern can be calculated by
observing that the time to complete the pattern is given by 2 + 3
+ -+ +N = (N + 2)(N — 1)/2. The number of packets transmit-
ted in the pattern is N(N — 1) (from every station to every other
station), and thus the throughput is

§=2

TN+2°

While fairness does not impose serious efficiency degradation,
politeness does. To understand why politeness decreases efficiency,
one should examine Figs. 2 and 3, where the schedules used do not
obey the politness restriction. As a matter of fact, it is evident that
these schedules ‘‘benefit’” from letting a station transmit while
hearing a packet which is not destined to itself. This degradation is
stated in the next theorem.

Theorem 3: The efficiency of a polite system is exactly 1.

Proof: First we show that the system efficiency is bounded
from above by 1. This can be shown by examining the time-space
domain and observing that on any left diagonal there can be at most
one transmission point, or otherwise the system does not obey
politeness. Therefore, the number of transmission points on the
N X t rectangle is bounded by T(#) = ¢+ N — L. Thus, since the
number of packets successfully received by time ¢ is bounded from
above by T'(?), the system efficiency is bounded from above by 1.
Now, it is easy to see that throughput of value 1 is attainable in the
system. This can be achieved by having station 1 transmitting all the
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STATIONS

Fig. 2. Throughput of value 10/6 is attainable on a six station system.

STATIONS
1 2 3 4 5 6

20—

TIME

Strictly fair throughput of value 30/20 is attainable on a six station
system.

Fig. 3.

time and all the other stations stay silent. Thus, we conclude that the
efficiency of the system is exactly 1.

Having calculated the efficiency of a polite system, we next
discuss the efficiency of a unidirectional-polite system. We claim
that if the direction of politeness can be chosen for every station
independently of the politness direction chosen for the other sta-
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tions, then the efficiency of the system can approach 2. To verify
this claim, observe Fig. 2: let station 1 be polite to the left and
station 6 be polite to the right (which actually implies no politeness
of these stations); let station 2 be polite to the left and station 5 be
polite to the right; and let stations 3 and 4 be either polite to the
right or polite to the left. Under this politeness rule, the transmis-
sion policy depicted in Fig. 2 is still valid and the system throughput
can get as high as 2 — 2/N.

On the other hand, if the politeness direction is chosen to be
uniform (i.e., either all stations are polite to the left or all stations
are polite to the right), then the system efficiency remains 1. This
claim may be easily proved along the same lines of Theorem 3.

C. Discussion

From this analysis, it is evident that under strict transmission
schedules the potential throughput of the fast bidirectional bus
system is relatively high. The efficiency of similar single shared-
channel systems, like the one-hop packet radio network or the
relatively slow bidirectional bus system, is known to be 1. In
comparison, we showed above that the time-space event separation
observed in the very-fast bus system allows the throughput of this
system to get as high as 2. This is shown to hold even if (strict)
fairness is required in the system. Thus, these systems can benefit
from the use of scheduled transmissions. On the other hand, these
results also stress the limitation of the system which cannot accom-
modate throughput higher than 2.

However, surprisingly, we realize that forcing the politeness
property, which is supposed to increase the throughput of a bus
system under stochastic arrivals (as in the CSMA access scheme),
actually decreases the system efficiency down to 1. Nevertheless,
applying directional politeness does not necessarily degrade the
system efficiency.

It should be emphasized that the above results are based on the
assumption of point-to-point transmissions. Note that in a broadcast
environment, namely, in which each transmission needs to be
received by all other stations, the capacity is exactly 1 (since each
transmission point will require N — 1 reception points).

IV. THE SYSTEM THROUGHPUT UNDER STOCHASTIC ARRIVALS

The system model is the one given in Section II above. The
arrival process is modeled according to the ‘traditional’” model
used in the literature (see, for example, [2]) of packet radio net-
works. According to this model, the packet transmissions of each
station are modeled as a sequence of independent Bernoulli trials.
This sequence represents the combined stream of old retransmitted
packets and newly arriving packets. Thus we have:

G, = Pr [ ith station transmits a packet in any given slot]
i=1,2,--,N.

Since in our model there is importance to the packet destination,?
we identify the destination of each packet sent:

r;=Pr [station i’s packet is destined to station Jl

J#I.
This definition obviously requires: Y r;;=1fori=1,2,--+, N.
J#i

Two important parameters are considered in this model: the
average traffic (also called the offered load) and the throughput.
The offered load of station / is the expected number of packets (per
slot) transmitted by this station. This is denoted above by G;.
Similarly, the offered load from station i to station j, denoted by
G;;, is the expected number of packets transmitted from station i to

2 The destination information is not important in the traditional model of a
slow bus network, since the successful reception of a packet does not depend
on its destination.
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station j. The total offered load of the system, denoted by G, is the
expected number of packets transmitted (per slot) in the system.
N

Obviously we have G;; = G;r;and G = Y G,.

i=1

In a similar way, we define the system throughput. The through-
put of station i, denoted by S;, is the expected number of packets
(per slot) originated at station / and successfully received at their
destination. Similarly, the throughput from station i to station j,
denoted by S;;, and the total system throughput, denoted by S, are
defined. Note that this definition of throughput is consistent with the
definition given is Section III above.

A. Exact Throughput Analysis of a Nonpolite System
We start the throughput analysis of the system by studying the
nonpolite scheme. In this scheme, the behavior of one station is
independent of the transmissions of the other stations; thus, the
throughput from station / to station j is easily shown to be
i+],

N
Sij= Gi"'ij' kI;II(l - Gk)

k+i

(3.1)
and the total throughput originated at station i is

-5 s,=G I 1-6)
o

i=1,2,-",N. (32)

k#l

It is important to emphasize that the model considered here is
significantly different from the one considered by [2]. Nevertheless,
the basic assumption that the stations behave independently of each
other (by the assumption that no politeness is used) leads both
models to the same results. Thus, the throughput of our system is
identical to that of the Slotied Aloha system, and we refer the reader
to the literature (see, e.g., [8]) for further analysis of its perfor-
mance.

B. Polite System: An Exact Analysis

For the analysis of the polite systems, we must change our
assumption rtegarding the arrival process. Rather than using the
previous Bernoulli assumption, according to which station i is
assumed to transmit a packet with probability G; at every slot, we
use a modified assumption according to which station i transmits
with probability G; in each slot in which it is not forced to be silent
by the pohteness rule Thus, if we observe only those slots at which
station i is allowed to transmit by the politeness rule, the packets
transmitted from station i behave like a stream of Bernoulli trials.

Under these assumptions, it is possible to represent the system
behavior by a Markov chain. However, note that the stations’ status
is not sufficient to represent the system. Rather, in order to form a
Markov chain, we must include the status of the channel during the
tth slot in this representation. A state in this Markov chain can be
described by the channel status at each of its N — 1 segments,
where a segment is the channel section between two neighboring
stations. During slot ¢ each of these segments may be in either of
four states: a) no transmission propagates on the segment, b)
transmission from left to right propagates along the segment, c)
transmission from right to left propagates along the segment, and d)
two concurrent transmissions (from left and from right) propagate
along the segment. Since the number of segments is N — 1, the
state space contains 4™V~ ! states.

For very small values of N (N =< 5) it is possible to solve this
Markov chain by calculating the (finite) transition matrix and nu-
merically solving for the steady-state probabilities of the system
states. To demonstrate the method, consider a two station system.
At every slot, the channel may be in either of four states: 1) only
station 1 transmits, 2) only station 2 transmits, 3) both stations
transmit, and 4) none of the stations transmit. We denote the
probability that at slot ¢ the system is in these states by m;, 7,,
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Fig. 5. The middle-to-side throughput in a three station system.
75, and m,, respectively. At steady state, these probabilities obey
Gl)(l -Gy + m (1 - G,)
+m,(1-Gy) + 7,01

mo = mo(l -

m, = 1,G,(1 - Gy) + ™G,
7, = mo(1 = Gy)Gy + 1,6,
T2 = T50G,G,.

Solvmg this set of equations yields a solution for 7y, 7, 7,, and
7, in terms of the system parameters (G, G,). From this solution
we then get the system throughputs: Sy, = 7, + 75, S,y =m+
m,,. Note that the throughput must obey S+ 8, =1, due to
Theorem 3.

To demonstrate the system behavior we next analyze, using this
method, a three station system. Two symmetry assumptions are
used in this ana]ysm 1) the transmission rate G; for symmetrically
positioned stations is assumed to be identical (thus we assume that
G,=G;=p and G, = g); and 2) the destination of a packet
transmitted from stauon i is equally likely to be any of the other
N — 1 stations, i.e., r;; = 1/(N —1)for j#iand r;=0.

Using the method descnbed above, we constructed the Markov
chain (consisting of 16 states) representing the system (see [10D),
solved it numerically, and calculated the system throughputs. The
results of this analysis are depicted in Figs. 4-6. Fig. 4 is 2
three-dimensional piot of the throughput originated at a side node
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Fig. 6. The total throughput in a three station system.

and destined to the other side node (the sum of S,; and Sj,) as a
function of p and g. Fig. 5 is a three-dimensional plot of the
throughput originated at the middle node and destined to a side node
(the sum of S,, and S,;) as a function of p and g. We omit plotting
the throughput originated at the side nodes and destined to the
middle node, since the shape of this curve is similar to the one given
in Fig. 4 (however, the level of that curve is lower, ¢.g., for p = 1
and g = 1, its value is 1/4, while in Fig. 4 this value is 1/2).
Lastly, Fig. 6 depicts the total throughput (S) in the system as a
funciton of p and g. A discussion of the system behavior, as
observed in these figures, is given in Section IV-D.

C. Polite System: An Approximation for an N Station System

Since the exact method described in the previous subsection may
not be applied for systems with large N (due to the exponential
number of equations—4™~!), we next propose an alternative ap-
proximation method.

Let the triple (RS, k, ¢) [the triple (LS, k, t)] denote the event
that during slot 7 station k does not hear a packet arriving from the
right (left). Let the triple (Q, k, ¢) denote the event that station k is
quiet (does not transmit) at slot . To derive the system throughput,
we first calculate the probability that the event (LS, k, f) occurs.
This event occurs if and only if, for every station j, such that
1 < j < k, station j does not transmit at time ¢ + j — k. Thus,

Pr[(LS, k, 1)) =Pr[(Q k-1, 0-1),(Q. k~2,1-2),
(0L, t—k+1)]. (4)

This can be calculated as

Pr[(LS, k,t)] =Pr[(@ k—1,1-1)[(Q k—-2,1~2),
(@1, -k + 1))
“Pr[(Q, k-2,1-2),

(01, -k + 1) (4.2)

The conditional probability given above can be calculated as fol-
lows:

Pr[(Q, k—1,t-1)|(Q, k—-2,t-2),
e (@ L, t-k+1)] =1-G,_,
“Pr[(RS, k=1,t-1)[(Q, k-2,t-2),

(0, L, t—k+ 1)]. (4.3)
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Now to calculate the expression
Pr[(RS, k—1,t-1)[(Q k-2,1-2),,
(@, 1,t-k+1)],

we make the following independence assumption for the system.

1) Independence Assumption: The event (RS, k, t) is indepen-
dent of the events (Q, k — 1, t — 1),--+,(Q, 1, t =k + 1).

This assumption means that the event that at time f station k
hears a transmission arriving from the right is independent of the
fact that stations k — 1, k — 2,---,1 are quiet at times ¢ — 1,
t—2,-++,t— k + 1, respectively. Obviously, this is not a true
property of our system since these events are correlated to each
other. However, it is easy to see that the dependency between these
events is relatively weak, and thus we assume full independence.
Note that this assumption will imply also that the event (RS, &, 1)
is independent of the event (LS, k, ).

We now assume that the system is at steady state and denote:
R, 2 Pr((RS, k, ), L, 2 Pr [(LS, k, 1)]. Then from the
independence assumption and from (4.2) and (4.3), we may con-
clude

L,= (1 - Ry Gk—l) ) (1 - Ry - kaz)
'--(l—R,'Gl); k=2,3,---,N. (4.4)

In a symmetric way, we calculate R,

Ry = (1 =Ly Giar) (1 = Lyyz Geaa)
o+ (1-Ly-Gy); k=1,2,---,N-1.

(4.5)
The values of L, and R, are obviously 1. Now (4.4) and (4.5)
form a set of 2N — 2 equations in 2N — 2 variables, a set which
can be solved by numerical methods.

Using the independence assumption and assuming steady state
(see [10]), we may now calculate the system throughputs as a
function of the parameters R, and L,:

Sy=Gyrp Li"R;"Res  j<k  (4.69)
Sj =Gj'rjk'Rj.Lj'Lk; i>k. (46b)

From these equations and from (4.4) and (4.5), one can calculate
the system throughput as a function of the transmission parameters.

Next we examine the quality of the approximation. We do so by
computing the throughput for systems where the offered load is
identical for all stations (G; = p). For the three station system, the
approximation results are compared to the exact results (derived in
Section IV-B) and depicted in Fig. 7. For a five station system and a

e



S
10~
® e e SIMULATION .
| e’ APPROXIMATION z
08|~ TOTAL ¢
- L]
®
06—
r L]
04
L]
SG
o [
L] S,
0.2 - . 3
- S' L4
v T s
. °
0.0 1 | 1 | i | i b p
00 0.2 0.4 06 08 1.0
Fig. 8. The throughput in a fully symmetric five station system: simulation
versus approximation.
s
10—
B stOTAL
08—
i .
06
| 25,
D
04
o
L 28,
o,
o
02
28, °
- =2, .
- -
0.0 L | L% 1 p
00 0.2 04 0.6 08 1.0
Fig. 9. The throughput in a fully symmetric ten station system: simulation

versus approximation.

ten station system, the approximation results are compared to simu-
lation. Fig. 8 depicts the throughput in the five station system—note
that dots in this figure represent simulation results, and that the
throughput S, and S; are not plotted (since S, = S, and S5 = S,).
Fig. 9 depicts the throughput in a ten stations system; shaped dots
represent simulation, and each curve represents the sum of the
throughput for two symmetric stations (like 1 and 10).

For these comparisons we observe that the approximation predicts
the individual station throughput quite accurately for low offered
loads (p < 0.6) and not so accurately for higher offered loads. The
reason is that at high loads the dependency between events increases
and thus the independence assumption does not reflect the system
behavior properly. Note, however, that the accuracy increases with
the system size, so that for large systems the approximation may be
quite accurate. In light of the discrepancies in predicting the individ-
ual station throughputs, the predictions for the total system through-
put arc surprisingly very accurate. It seems that the errors in
predicting the individual station throughput, using the independence
assumption, compensate for each other, yielding a very good ap-
proximation for the total throughput.

D. Discussion of the Results

The analysis of Section IV reveals the important properties of the
very fast bus system. These properties are discussed below.
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From the analysis of the three station system (which is an exact
analysis), we see how the system throughput is affected by the
offered load of the individual stations. At the level of individual
stations, we recognize that when a certain station increases its load,
the throughput originated at this station will increase while the
throughput originated at the other stations will decrease. This
behavior is quite common for shared channel communication net-
works; for example, the slotted ALOHA system, or the nonpolite
system described in Section IV-A above behave the same way [see
equation (3.2)].

While at the individual station level the polite system behaves
very much like other shared channel systems, the advantages of this
system are revealed by examining the behavior of its total through-
put. From Fig. 6 we observe that any increase in the offered load
from either of the side stations or of the middle station causes an
increment in the total throughput. The importance of this property is
that the system is very stable: whenever the system load increases,
the throughput also increases. This property is not very common in
shared channel communication networks. For example, in slotted
ALOHA, which is unstable (see, e.g., [8]), an increase in the
offered load may cause the total throughput to decrease.

The importance of the stability property is that no special mecha-
nism is required to create the system stability. In nonstable systems,
like slotted ALOHA, it is required to control the offered load to
prevent the system from getting into unstable states (states in which
the system blocks itself); here these mechanisms are not required
since the system controls itself in a natural way.

When the system is fully symmetric, its behavior is very similar.
Figs. 7-9 show that at low load the throughput of every station
increases, while at high load the middle stations become more and
more dominant at the expense of the side stations which become
more quiet. The total throughput, nonetheless, monotonically in-
creases with the offered load.

An important property observed in all these systems (and systems
of other sizes that we examined as well) is that the total throughput
approaches 1 when the offered load of each station approaches 1.
This is an important feature for stability in real systems in which
buffering is used to queue messages and in which at very high loads
all queues are likely to contain messages.

The explanation for this stability property is due to the fact that,
unlike other shared channel systems, the stations in this system are
not all alike. Rather, at every moment ¢, some stations get transmis-
sion priority over the others. More specifically, we may note that if
station i successfully transmitted at time ¢ — 1, it has full transmis-
sion priority at time ¢ (due to the politeness), and thus, if it does
transmiit at this time, the transmission will be successful as well.
This type of behavior leads the system to behave like an exhaustive
service system in which a station who grabbed the channel will hold
it for quite a while, while the other stations remain polite.

Note that this feature provides a possible explanation for stability,
but does not prove it. The reason is that, in order to prove the
property, the continuous-transmission periods must be weighted
against contention periods, which can be lengthy as well and in
which the throughput can drop to 0. The actual proof of the
property, for the three station system, is given by the exact analysis
provided above, which does take this weighting into consideration.
For larger systems, strong evidénce for the property is given by the
simulation and approximation results provided, for example, in

_Figs. 7-9. Support for the presence of continuous transmission

periods (as an explanation for stability) was provided by examining
the transmission patterns observed in these simulations.

Another interesting property is the effect of station location on its
‘“priority’” within the system. From the results, it is evident that the
central stations get higher priority than the side stations. In fact, the
closer a station is to the center, the higher is its throughput. An
intuitive explanation for this feature can be given by observing Fig.
10, in which we give an estimate for the likelihood of a station
getting into a continuous-transmission mode. The heavy line in Fig.
10(a) identifies the set of points which needs to be silent to allow
station 1 (a side station) to successfully transmit at point (1, ). The
shaded area needs to be silent in order for the station to be
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Fig. 10. Requirements for continuous transmission: (a) side station; (b)
central station.

undisturbed after ¢ (and thus not having to obey politeness) and get
into a mode of ‘‘controlling the channel’’ and continuously transmit-
ting. In Fig. 10(b), we depict the same regions for a central station.
The size of the shaded area required for the side station is given by
N2, while the size of this area for the central station is given by
N?/2. This indicates that a central station will have much higher
likelihood of taking control of the channel, and provides an explana-
tion for its higher throughput.

While these properties have been observed with regard to the
several systems we studied, it remains as an open question whether
or not the properties hold for any size system; we conjecture that it
is true for larger systems.

An interesting question is what would be the performance of a
system which is implemented by two unidirectional buses and in
which a station transmits a packet only on one bus to the down-
stream destination. We conjecture that the performance of this
system will be better than or equal to that of the system analyzed in
this paper (since it ‘‘generates less noise’’). This superiority is,
nonetheless, restricted to the stochastic model. If, instead, we
consider a model of strict deterministic schedules, it is easy to see
that both systems share the same bounds: the capacity of this system
is 2 in a nonpolite environment (the proof of this property is
embedded in the proof of Theorem 3) and 1 in a polite environment.

V. CONCLUDING REMARKS

The main objective of this paper has been to investigate the
projections from the previous literature regarding the degradation of
efficiency in very fast bus networks. To pursue this investigation,
we proposed a model which captures the dependency of events both
on time and space. Using this model, we have unveiled the
nonsymmetric structure of the bus architecture which had been
previously obscured by the traditional assumption of uniform packet
propagation time. The main predictions of our model are that the
very fast channel is stable and that, in contrast to what has been
predicted before, the channel efficiency does not severely degrade at
very high transmission rates.

The need to model the time-space event dependency imposed
technical complications on the model. As a result, we needed to
simplify the model in other ways, such as assuming a uniform
distribution of the stations over the bus. Further research is re-
quired, therefore, to provide precise throughput predictions for less
simplified models. Nevertheless, we conjecture that, in general, the
principles observed in this paper should hold for those models as
well. Specifically, we conjecture that the property of system stability
should hold when the stations are not evenly spaced over the bus; as
a matter of fact, since the layout studied here (evenly spaced
stations) is more symmetric than general layouts, it seems that the
other layouts are likely to lead to even more stable systems. On the
other hand, the property of reaching capacity of 2, using strict
schedules, will not be enjoyed by all structures. For example, if one
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considers the evenly spaced layout, and removes several stations,
one creates holes in the transmission pattern which degrade the
throughput. In such cases, the capacity will likely lie between 1 and
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